Citizen scientists monitoring the establishment and expansion of *Pterois miles* (Bennett, 1828) in the Aegean Sea, Greece

Ioannis GIOVOS¹, Periklis KLEITOU¹,², Vangelis PARAVAS¹, Dimitra MARMARA¹, Georgios ROMANIDIS-KYRIAKIDIS¹ and Dimitris POURSANIDIS³

(¹) iSea, Environmental Organisation for the Preservation of the Aquatic Ecosystems, 11 Ochi Av., 55438, Agios Pavlos, Thessaloniki, Greece
(²) Marine and Environmental Research (MER) Lab Ltd., 202 Amathountos Av., Marina Gardens, Block B, Offices # 13-14, Parekklisia, 4533, Limassol, Cyprus
(³) Foundation for Research and Technology - Hellas (FORTH), Institute of Applied and Computational Mathematics, rslab.gr, N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Greece.

Corresponding author: ioannis.giovos@isea.com.gr

Abstract: The introduction of the lionfish in the western Atlantic has been considered as one of the world’s most detrimental invasions. However, in the Mediterranean Sea, the devil firefish *Pterois miles* (Bennett, 1828) long after its first record in 1991, has only recently shown a rapid expansion. Citizen scientists have played a significant role in reporting the presence and monitoring the expansion of several invasive species around the world. In 2016 the environmental non-governmental Greek organisation “iSea”, initiated the citizen science project “Is it alien to you...Share it”, for the monitoring of alien species in the Greek waters. Between May 2016-September 2017, 37 records of the devil firefish have been reported, documenting the establishment and a northward expansion of the species in the Mediterranean. We discuss the importance of citizen scientists in the collection of information regarding invasive species and the potential of suggested conservation measures.

Key words: Lionfish ● Devil firefish ● Greece ● Aegean Sea ● Mediterranean Sea ● *Pterois miles*
Introduction

In the western Atlantic, the Indo-Pacific lionfish *Pterois miles* (Bennett, 1828) and its congeneric *Pterois volitans* (Linnaeus, 1758) have been recognised amongst the most ecologically harmful marine fish invasions (Whitfield et al., 2007; Albins & Hixon, 2013). In the Mediterranean, *P. miles* was first recorded in 1991 off the Israeli coast (Golani & Sonin, 1992) and since then several records have been reported from Lebanon (Bariche et al., 2013; Azzuro et al., 2017), South Turkey (Turan & Ergüden, 2014), Cyprus (Kletou et al., 2016), Southern Greece (Corsini-Foka & Kondylatos, 2015; Sterioti, 2016; Poursanidis & Marakis, 2016), Tunisia (Azzuro et al., 2017) and Italy (Azzuro et al., 2017), indicating an establishment of the lionfish at the eastern basin, thus raising concerns among conservationists.

In Greece, the first observation of *P. miles* was reported in 2015, in Kallithea, Rhodes Island (Corsini-Foka & Kondylatos, 2015) followed by observations in Crete (Sterioti, 2016) and Karpathos Island (Poursanidis & Marakis, 2016). Most of these sightings were collected by citizen scientists (divers, naturalists, fishermen, etc.) who can play a decisive role in the documentation of marine alien species presence and distribution worldwide (Zenetos et al., 2013; Scyphers et al., 2015). Citizen science is defined as research techniques that enlist the help of members of the public to collect scientific data (Bonney et al., 2009) that along with local ecological knowledge can significantly improve research and data collection (Huntington, 2000).

Several portals and applications have been proven valuable tools and used to assist and involve the public (Ruttenberg et al., 2012). In May 2016, iSea launched the citizen science project “Is it alien to you…Share it!” aiming to record information on the occurrence, distribution and expansion of marine alien species in Greek waters and the contiguous seas. Up to date, the project has collected (*inter alia*) significant information on the presence of *P. miles* in the Greek seas, indicating its northward expansion and establishment.

Materials and Methods

In 2016, iSea established an online data repository, where each interested citizen could easily upload information along with a clear picture of the reported alien species. A Google Form and a Group on Facebook have been set up for facilitating the reports of alien species observations. The project’s group on Facebook numbers 1798 members up to date, with 320 actively engaged, 100 of those on a daily basis. Furthermore, 9 articles and 2 press releases have been published in local and national press for promoting the project and educating the public, accompanied by a social media campaign on the iSea’s social media platforms and pages.

![Figure 1. *Pterois miles*. iSea’s Alien Species Observation Form. The form is used for facilitating reports of alien species without photographic evidences to the project “Is it Alien to you…Share it!!!.](image-url)
Table 1. *Pterois miles*. Specimens reported to the project

<table>
<thead>
<tr>
<th>No</th>
<th>Length (cm)</th>
<th>Depth (m)</th>
<th>Coordinates</th>
<th>Area</th>
<th>Region</th>
<th>Date</th>
<th>Observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>35.469379-27.195089</td>
<td>Castelia. Karpathos</td>
<td>Dodecanese Islands</td>
<td>21/08/2016</td>
<td>Underwater Photographer</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>36.042562-27.970541</td>
<td>Kiotari. Rhodes</td>
<td>Dodecanese Islands</td>
<td>05/03/2017</td>
<td>Spearfisherman</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>35.164958-24.415054</td>
<td>Schinaria Beach</td>
<td>Crete Island</td>
<td>11/03/2017</td>
<td>Scuba diver</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>36.811629-27.182363</td>
<td>Nysiros</td>
<td>Dodecanese Islands</td>
<td>03/04/2017</td>
<td>Professional fisherman</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>36.720066-26.983918</td>
<td>Kefalos. Kos</td>
<td>Dodecanese Islands</td>
<td>24/04/2017</td>
<td>Professional fisherman</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>35.006451-26.141408</td>
<td>Athrinolakos. Siteia</td>
<td>Crete Island</td>
<td>5/2017</td>
<td>Professional fisherman</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>35.179617-24.395664</td>
<td>Plakias Beach</td>
<td>Crete Island</td>
<td>04/06/2017</td>
<td>Scuba diver</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>36.378871-28.241711</td>
<td>Kalithea. Rhodes</td>
<td>Dodecanese Islands</td>
<td>09/06/2017</td>
<td>Spearfisherman</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>35.469379-27.195089</td>
<td>Castelia. Karpathos</td>
<td>Dodecanese Islands</td>
<td>09/06/2017</td>
<td>Scuba diver</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>36.428333-28.240278</td>
<td>Zefiros Beach. Rodos</td>
<td>Dodecanese Islands</td>
<td>17/06/2017</td>
<td>Spearfisherman</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>35.176425-24.392863</td>
<td>Plakias Beach</td>
<td>Crete Island</td>
<td>18/06/2017</td>
<td>Vet</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>37.012940-26.918120</td>
<td>Telendos. Kalymnos</td>
<td>Dodecanese Islands</td>
<td>22/06/2017</td>
<td>Scuba diver</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>34.997229-25.581359</td>
<td>Nea Myrtos. Ierapetra</td>
<td>Crete Island</td>
<td>25/06/2017</td>
<td>Recreational fisher</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>36.318979-28.206942</td>
<td>Ladiko. Rhodes</td>
<td>Dodecanese Islands</td>
<td>19/07/2017</td>
<td>Underwater Photographer</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>36.319205-28.208332</td>
<td>Ladiko. Rhodes</td>
<td>Dodecanese Islands</td>
<td>19/07/2017</td>
<td>Underwater Photographer</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>35.179752-24.227789</td>
<td>Fragokastelo. Sfakia</td>
<td>Crete Island</td>
<td>23/07/2017</td>
<td>Spearfisherman</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>12.5</td>
<td>36.890295-27.331688</td>
<td>Psalidi. Kos</td>
<td>Dodecanese Islands</td>
<td>25/07/2017</td>
<td>Scuba diver</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>35.604653-27.160267</td>
<td>Apella Beach. Karpathos</td>
<td>Dodecanese Islands</td>
<td>27/07/2017</td>
<td>Underwater Photographer</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td>35.171186-24.401393</td>
<td>Kalypso Bay. Southern Crete</td>
<td>Crete Island</td>
<td>04/08/2017</td>
<td>Scuba diver</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>36.406175-27.452644</td>
<td>Tilos</td>
<td>Dodecanese Islands</td>
<td>05/08/2017</td>
<td>Scuba diver</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>36.227947-27.625076</td>
<td>Chalki</td>
<td>Dodecanese Islands</td>
<td>05/08/2017</td>
<td>Scuba diver</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>35.191942-24.143457</td>
<td>Ammoudi beach</td>
<td>Crete Island</td>
<td>06/08/2017</td>
<td>Recreational fisher</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td>35.187085-24.390978</td>
<td>Plakias Beach</td>
<td>Crete Island</td>
<td>08/08/2017</td>
<td>Underwater Photographer</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>34.930485-24.802379</td>
<td>Kala Limania Beach</td>
<td>Crete Island</td>
<td>12/08/2017</td>
<td>Spearfisherman</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>6.173128-28.150536</td>
<td>Agathi Beach. Rhodes</td>
<td>Dodecanese Islands</td>
<td>18/08/2017</td>
<td>Recreational fisher</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>35.407490-27.153068</td>
<td>Diakofii Beach. Karpathos</td>
<td>Dodecanese Islands</td>
<td>20/08/2017</td>
<td>Underwater Photographer</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>7.5</td>
<td>36.379719-28.239012</td>
<td>Kalithea. Rhodes</td>
<td>Dodecanese Islands</td>
<td>03/09/2017</td>
<td>Spearfisherman</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4</td>
<td>34.924020-26.128635</td>
<td>Koufonisi Siteias</td>
<td>Crete Island</td>
<td>08/09/2017</td>
<td>Spearfisherman</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>34.953254-25.137108</td>
<td>Treis Eklisies</td>
<td>Crete Island</td>
<td>09/09/2017</td>
<td>Spearfisherman</td>
<td></td>
</tr>
</tbody>
</table>
iSea’s project “Is it alien to you…Share it” utilizes a verified citizen science model as the most cost effective and accurate citizen science model (Gardiner et al., 2012). Observers are requested to provide the photo of the specimen and information on the size (length and/or weight), the depth, the number of observed specimens, the exact location, the date and the type of observation (Fig. 1 & Table 1). Only photo-identified observations are recorded in the database.

Results and Discussion

In total, 38 records of different *P. miles* individuals are recorded in the database with 37 reported by citizen-scientists and 1 record retrieved from a media network channel post (Figs 2 & 3). Most of these records involved spear-gun fishermen (n = 13, 35.14%), followed by scuba divers (n = 10, 27.03%), underwater photographers (n = 6, 16.22%), other types of recreational fishers (n = 5, 13.51%), professional fishermen (n = 2, 5.41%) and a vet (n = 1, 2.70%). Some of the lionfish sightings were located within the known distribution of the species in Greece (i.e. near Rhodes, Karpathos and Crete islands) (Table 1). However, the majority confirm the expansion of the species distribution in the Greek waters. Specifically, specimens 6, 10, 11, 14, 16, 18, 21, 25, 28, 29, 31, 36 and 37 (Table 1) constitute the first records of the species from South Crete, while records 7, 8, 9, 17, 23, 26 and 27 indicate its distribution expansion towards northern parts of the
Southern Aegean Sea, with record 17 (in Kalymnos island) being the northernmost Mediterranean lionfish encounter up to date. It should be noted that, the expansion data presented within this study, closely follow the predictions of Poursanidis (2015), as these were described as potential suitable areas for the species in the Mediterranean Sea through ecological niche modelling.

Taking into account the rapid and detrimental expansion of the lionfish in the Caribbean Sea (Albins & Hixon, 2008 & 2013), it is possible that _P. miles_ may bring similar negative results and consequences through its rapid establishment in the eastern Mediterranean basin. The latter is highlighted by the fact that in only 3 to 5 years after its reappearance in the Mediterranean, the lionfish was able to fully establish its populations in several countries of the eastern Mediterranean basin including Cyprus (Kletou et al., 2016), Lebanon (Bariche et al., 2013) and Turkey (Özbek et al., 2017) as well as far to the Central Mediterranean Sea (Azzuro et al., 2017). The findings of this study provide the first robust evidence of its expansion and establishment towards northern parts of the Eastern Mediterranean Sea, presenting the patterns followed by most Lessepsian immigrants (Katsanevakis et al., 2013). The on-going climate change in the eastern Mediterranean basin (Occhipinti-Ambrogi, 2007; Raitos et al., 2010) indicate that its rapid increase and establishment favoured by the overall environmental conditions and no obstacle exist to its further dispersal. In order to mitigate the potentially serious negative consequences of the permanent establishment of an introduced IAS, as the lionfish, early detection and rapid eradication measures are crucial to be taken immediately, by the scientific community and the competent authorities. Such measures have been also identified as necessary to mitigate IAS by the recent EU Regulation ((EU) No 1143/2014). Apart from the latter, conservation approaches, increased and wide spread public awareness activities to marine users and all involved stakeholders are also necessary to be carried out, to inform

Figure 3. _Pterois miles._ Some of the pictures accompanied the report of _P. miles_ in the database of the project.
on the potential impact of the fish in human health, to ameliorate possible ecosystem effects of the lionfish invasion in the Mediterranean Sea and to assure that the species are properly identified as an IAS.

Similar activities are included in a recently approved EU LIFE project (RELIONMED - LIFE16 NAT/CY/000832), which aims to set the basis for prevention of lionfish expansion through early response and targeted removal efforts by scientists. RELIONMED project was formally initiated on September 2017, and will encompass several activities strongly relying on citizen scientists’ and stakeholder’s participation. Amongst other, the project plans to undertake risk analysis and risk assessment of lionfish presence in the Mediterranean Sea, develop and operate a lionfish surveillance and early detection system, increase awareness and develop best guides and tools for managers. The demonstration activities of the project will take place in Cyprus and the best practices, will be transferred to Greece and replicated by iSea. Such initiatives are crucial and should be further promoted in addition to complementary research activities for unravelling interactions between the lionfish and the Mediterranean ecosystems are of paramount importance towards their better understanding and mitigation.

Acknowledgements

We warmly thank Nikos Sarikakis, Tolis Gavogiannis, Christos Psaras, Nikos Eikisipentakis, Giorgos Anastasis, Valantis Kourzis, Philippos Marakis, Kostas Andreadis, Manos Christakis, Stratos Koutos, Sotiris Christodoulou, Ioannis Brigos, Christos Vakouftsis, Ilias Ntolias, Manos Bakalis, Boniek Falicki, Jerome Smeets, Nikos Xenos, Andreas Folokis, Claus Rasmussen, Paul Tavoularis, Dimitris Grispolakis and the diving centers: Karpathos Diving Center, Kalymnos Scuba Diving Center, Kos Divers, Kalypso Dive-Center, Dive Together Crete-Scuba Diving School for reporting their observations of lionfish to iSea. Last, we would like to thank the two anonymous reviewers for their constructive comments and the improvement of the manuscript.

References

